Flow-mediated release of nitric oxide in isolated, perfused rabbit lungs.

نویسندگان

  • T Ogasa
  • H Nakano
  • H Ide
  • Y Yamamoto
  • N Sasaki
  • S Osanai
  • Y Akiba
  • K Kikuchi
  • J Iwamoto
چکیده

The effects of changing perfusate flow on lung nitric oxide (NO) production and pulmonary arterial pressure (Ppa) were tested during normoxia and hypoxia and after N(G)-monomethyl-L-arginine (L-NMMA) treatment during normoxia in both blood- and buffer-perfused rabbit lungs. Exhaled NO (eNO) was unaltered by changing perfusate flow in blood-perfused lungs. In buffer-perfused lungs, bolus injections of ACh into the pulmonary artery evoked a transient increase in eNO from 67 +/- 3 (SE) to 83 +/- 7 parts/billion with decrease in Ppa, whereas perfusate NO metabolites (pNOx) remained unchanged. Stepwise increments in flow from 25 to 150 ml/min caused corresponding stepwise elevations in eNO production (46 +/- 2 to 73 +/- 3 nl/min) without changes in pNOx during normoxia. Despite a reduction in the baseline level of eNO, flow-dependent increases in eNO were still observed during hypoxia. L-NMMA caused declines in both eNO and pNOx with a rise in Ppa. Pulmonary vascular conductance progressively increased with increasing flow during normoxia and hypoxia. However, L-NMMA blocked the flow-dependent increase in conductance over the range of 50-150 ml/min of flow. In the more physiological conditions of blood perfusion, eNO does not reflect endothelial NO production. However, from the buffer perfusion study, we suggest that endothelial NO production secondary to increasing flow, may contribute to capillary recruitment and/or shear stress-induced vasodilation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erythrocytes of humans with cystic fibrosis fail to stimulate nitric oxide synthesis in isolated rabbit lungs.

Erythrocytes (red blood cells) of either rabbits or healthy humans are required to demonstrate the participation of nitric oxide (NO) in the regulation of pulmonary vascular resistance in the isolated rabbit lung. The property of the erythrocyte that is responsible for the stimulation of NO synthesis was reported to be the ability to release ATP in response to physiological stimuli, including d...

متن کامل

Extracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance.

Previously, it was reported that red blood cells (RBCs) are required to demonstrate participation of nitric oxide (NO) in the regulation of rabbit pulmonary vascular resistance (PVR). RBCs do not synthesize NO; hence, we postulated that ATP, present in millimolar amounts in RBCs, was the mediator, which evoked NO synthesis in the vascular endothelium. First, we found that deformation of RBCs, a...

متن کامل

Hemoglobin and red blood cells alter the response of expired nitric oxide to mechanical forces.

Expired nitric oxide (NO(e)) varies with hemodynamic or ventilatory perturbations, possibly due to shear stress- or stretch-stimulated NO production. Since hemoglobin (Hb) binds NO, NO(e) changes may reflect changes in blood volume and flow. To determine the role of blood and mechanical forces, we measured NO(e) in anesthetized rabbits, as well as rabbit lungs perfused with buffer, red blood ce...

متن کامل

Effect of nitric oxide modulation on the basic and rate-dependent electrophysiological properties of AV-node in the isolated heart of rabbit: The role of adrenergic and cholinergic receptors

Introduction: Recent studies showed that nitrergic system have specific modulatory effects on electrophysiological properties of atrioventricular (AV) node. The aim of this study was to determine the effects of nitric oxide (NO) on the electrophysiological properties of isolated rabbit AV node and to investigate the role of adrenergic and cholinergic receptors in the mechanism of its action...

متن کامل

Role of nitric oxide on the electrophysiological properties of isolated rabbit atrioventricular node by extracellular field potential during atrial fibrillation

Introduction: The aim of the present study was to determine direct effects of NO modulation on protective electrophysiological properties of atrioventricular node (AV node) in the experimental model of AF in rabbit. Methods: Isolated perfused rabbit AV nodal preparations were used in two groups. In the first group (N=7), LNAME (50μM) was applied. In the second group (N=12), different concent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 91 1  شماره 

صفحات  -

تاریخ انتشار 2001